Содержание
Разница между овалом и эллипсом
Простейшие математические термины могут вызвать настоящую головную боль у человека, далёкого от точных наук. Такие определения, как овал и эллипс, путают не только школьники, но и достаточно взрослые люди. Попробуем наметить отличия между данными понятиями, используя простые и доступные выражения, избегая математических терминов.
Определение
Овал – это замкнутая вытянутая геометрическая фигура, обладающая правильной формой и особыми свойствами. Вписанная в окружность, она обладает как минимум 4 точками экстремума, то есть вершинами. Если разделить овал прямой линией по двум противоположным вершинам, то два сегмента, полученные в результате данного действия, будут абсолютно идентичными.
Эллипс – это замкнутая плоская кривая, частный случай овала, у которого имеется 4 вершины в точках экстремума. Центральная ось, проведённая по двум противоположным точкам экстремума, содержит две точки фокуса, равноудалённые от вершин. Сумма расстояний от фокусов до любой точки на кривой эллипса – постоянная величина, которая равна длине центральной оси.
Эллипс к содержанию
Сравнение
Таким образом, ключевое отличие между указанными понятиями на бытовом уровне улавливается через их определения. Вариантов построения овала – множество, оси, проведённые из точек их вершин, могут иметь различное соотношение. Если же мы говорим про эллипс, то здесь действуют особые условия его построения. На большей оси есть 2 фокуса, равноудалённые от вершин.
Сумма расстояний от фокусов до любой точки на кривой всегда одинаково и равно длине большой оси. Это свойство используют строители и дизайнеры для проецирования фигур на местности. Если же расстояние от фокусов будет одинаковым, но больше или меньше длины большой оси, то мы говорим об овале.
к содержанию
В школе большинству из нас не раз объясняли, в чём отличие радиуса от диаметра, серной кислоты от соляной, эллипса от овала. Но прошли годы, и школьные знания, «слежавшись» под весом многолетней будничной рутины, по большей части позабылись. В рамках данной статьи мы попытаемся восполнить хотя бы один досадный пробел в знаниях и подробнее рассмотрим последний из приведённых примеров, научившись отличать овал от эллипса. Для начала обозначим ключевые определения.
Овал
Под овалом в геометрии понимается вытянутая замкнутая фигура правильной формы. Овал относится к двухмерным фигурам и обладает особыми свойствами. Само слово образовано от французского Ovale, которое, в свою очередь, имеет общие корни с латинской лексемой ovum, что в переводе означает «яйцо». Кривая этого геометрического объекта имеет с любой прямой не более двух общих точек.
Справка! Нельзя сказать, что человек, называющий данную геометрическую фигуру просто «кругом», абсолютно прав. На самом деле окружность (в которой, как мы знаем, все точки кривой равноудалены от центра) – это одна из множества вариаций овала.
Существует структурно более сложное понятие овала в инженерной графике. В этой отрасли науки данным термином обозначают фигуру, имеющую две оси симметрии и построенную при помощи сочетания четырёх участков кривых линий от двух радиусов. Эти участки подобраны таким образом, чтобы обеспечить «перетекание» от одного радиуса к другому без нарушения симметрии и контура фигуры. Если определять координаты точки, постоянно движущейся по линии овала, то она всегда будет находиться на одном из вышеописанных радиусов кривизны. Эти радиусы считаются «фиксированными».
Эллипс
У слова «эллипс» имеются греческие корни, наиболее близкие по переводу к словам «нехватка, недостаток, опущение». Чего же не хватает в эллипсе и что эта фигура вообще из себя представляет?
Эллипсом принято считать любую замкнутую кривую на плоскости, которая имеет четыре вершины в так называемых точках экстремума. Точки фокуса эллипса равноудалены от его вершин. Стороны эллипса будут симметричны, если разделить его в любом направлении прямой, проходящей через его центр. Впрочем, это правило действительно и для фигур овального типа.
Что общего
Рассматривая вопрос о том, что может быть общего между овальной и эллиптической фигурой, можно заключить, что они имеют весьма похожий внешний вид. Кроме того, обе фигуры располагаются в так называемом евклидовом пространстве. На простом языке евклидово пространство можно объяснить как двумерное пространство, в котором положение точки может быть обозначено при помощи двух чисел, обозначающей её координаты.
В чём отличие эллипса от овала
Различия между двумя этими весьма смежными понятиями вытекают в основном из их определений. Вернувшись к рассмотренному нами определению овала в инженерной графике, можно заключить, что он, в отличие от эллипса, в котором радиус кривизны варьируется перманентно, обладает «фиксированными» радиусами.
Справка! В трёхмерном пространстве возможно построение объёмного овала. Такие фигуры называются эллипсоидами и способны иметь приплюснутую или вытянутую форму. Эта форма достаточно широко распространена в макромире: ею обладает огромное количество известных планет и даже галактики.
Для овальных фигур существует великое множество вариантов построения. Оси их, начинающиеся в точках своих вершин, имеют различные соотношения между собой. В случае же с эллиптическими фигурами в силу вступают особые правила построения. Говоря проще, овалом обозначают более общее понятие, а эллипсом – лишь одно из его проявлений.
>
Классификация и идентификация эллипсовидных овальных кривых
Виктор Чебыкин
Введение
Продолжая рассмотрение эллипсовидных овальных кривых (Э.О.К.), начатое в статьях , и , остановимся еще на трех: циклоидальный овал; гиперэллипс Ламе; овальная кривая Rr — овал по сопрягаемым дугам окружностей (рис. 1). При этом также попробуем классифицировать их и другие Э.О.К. на три группы: гиперовалы, гипоовалы и гипергипоовалы. В последнем разделе речь идет об идентификации Э.О.К.
Рис. 1. Овальные кривые: а — циклоидальный овал; б — гиперэллипс Ламе;
в — овальная кривая Rr (гиперовал)
Циклоидальный овал
Циклоидальный овал (рис. 1а и 2) — это плоская гладкая замкнутая эллипсовидная двухфокусная овальная кривая, полученная в результате зеркальной стыковки двух «арок» циклоиды. Циклоида — плоская трансцендентная кривая; это траектория точки окружности, катящейся по прямой линии .
Одним из свойств циклоидального овала является наличие двух фокусов, имеющих строго определенное расположение.
Фокусы могут обменяться между собой восемью парами лучей, отраженных от кривой, и парой прямых лучей. Это свойство совпадает с аналогичным у кривой R1, описанной в . Точки падения этих лучей на кривую, так же как у кривой R1, являются характерными — в них меняется знак роста суммы пары отрезков от точки кривой до фокусов на противоположный.
Еще одно свойство циклоидального овала: размеры некоторых элементов овала могут быть вычислены как произведение радиуса производящей окружности данной циклоиды или размеров полуосей с определенными константами. О последних и пойдет речь далее.
Рис. 2. Циклоидальный овал
Элементы овала (рис. 2):
- R — радиус производящей окружности циклоиды;
- a — большая полуось;
- b — малая полуось;
- с — фокальный радиус (полурасстояние между фокусами);
- p — малый фокальный луч;
- s — большой фокальный луч;
- rp — перифокусное расстояние (минимальное расстояние от фокуса до точки на овале);
- ra — апофокусное расстояние (максимальное расстояние от фокуса до точки на овале).
Константы циклоидального овала:
- Константа соотношения осей овала
Ксо1 = а/b = p/2; - Фокальная константа
Vco = c/R ≈ 2,259 360 664 54…; - Перифокусная константа
PVco = rp/R ≈ 0,882 231 989 04…; - Апофокусная константа
AVco = ra/R ≈ 5,400 953 318 13…; - Эксцентриситетконстанта
Eco = с/a ≈ 0,719 176 835 98…; - Константа малого фокального луча
Lco = p/R ≈ 1,270 684 347 65…; - Константа большого фокального луча
GLco = s/R ≈ 4,693 983 506 71…
Попытка найти в литературе и Интернете сведения по константам циклоидальных овалов ничем не увенчалась, поэтому названия констант и их обозначения автор предложил свои. Ну и значения констант, за исключением первой, пришлось определить самому.
Теперь отнесем этот овал к одной из групп: гиперовалы (от греч., гипер — «над, выше»); гипоовалы (гипо — «под, ниже»); гипергипоовалы.
Построим по полюсам данного овала эллипс и увидим, что он будет описанным по отношению к овалу, а овал соответственно — вписанным в эллипс. Исходя из этого, циклоидальный овал является гипоовалом. Циклоидальные кривые используются в технике: маятник Гюйгенса; кривая кратчайшего спуска; циклоидальные передачи и редукторы; кулачки и эксцентрики…
Гиперэллипс Ламе
Кривая показана на рис. 1б. Такую форму и такое название кривая имеет, если степени m и n в формуле кривой Ламе больше 2.
Гиперэллипс, так же, как овал Кассини (который описан в ), имеет два основных оптических фокуса и три дополнительных. Само название его говорит о том, к какой группе следует отнести этот овал — к гиперовалам.
Рис. 3. Разновидности овальных кривых Rr
Гипоэллипс Ламе, показанный в , где он был назван просто кривой Ламе, в формуле имеет степени m и n меньше 2. При степенях m и n равных 2 кривая Ламе является эллипсом. В случае если одна из степеней больше, а другая меньше 2, мы имеем гипергипоэллипс (рисунок не показан). Если по полюсам этого овала построить эллипс, то можно увидеть, что кривые имеют как точки касания, так и точки пересечения между собой.
Овальная кривая Rr
Овальная кривая Rr — овал по сопрягаемым дугам окружностей (рис. 1в и 3). Эти овалы хорошо известны тем, кто учился в докомпьютерную эру (по аналогии с «до н.э.» имеем «до к.э.»). Ими пользовались для упрощенного изображения эллипсов на чертежах. Сейчас, по понятным причинам, необходимость в этом отпала. В технике эти овалы все же используются — кулачки, эксцентрики и т.п.
На рис. 1в изображена овальная кривая Rr (гиперовал), а на рис. 3 —сразу три вида овалов: внутренний — гиперовал; наружный — гипоовал; средний — гипергипоовал. Тонкими линиями показаны соответствующие этим овалам эллипсы, которые помогают определить принадлежность кривых к той или иной группе.
Классификация кривых, описанных в статье :
- овал Кассини — гиперовал;
- кривая Ламе (показанная) — гипоовал;
- кривые R0 и R1 — гипоовалы;
- кривая R2: верхняя часть — гиперовал, нижняя — гипоовал.
Идентификация эллипсовидных овальных кривых
Итак, для идентификации предлагаются следующие кривые: эллипс, овал Кассини, гиперэллипс Ламе; гипоэллипс Ламе; гипергипоэллипс Ламе; овал R0; овал R1; циклоидальный овал; гиперовал Rr; гипоовал Rr; гипергипоовал Rr. Зная геометрию и свойства данных кривых, классификацию можно выполнить визуально, однако иногда некоторые из них бывают очень схожи.
Идентификацию лучше проводить в той CADпрограмме, в которой эти кривые созданы. Автор для построения и идентификации кривых использовал программу КОМПАС.
При поочередном входе в режим редактирования кривых можно сразу распознать эллипс и все овалы по сопрягаемым дугам окружностей, группу которых определяем сопряжением с эллипсом. Все остальные кривые при редактировании покажут, что построены с помощью кривой Безье.
Оставшиеся кривые сначала необходимо разбить на группы в соответствии с нашей классификацией путем сопряжения с соответствующими им эллипсами.
В группе гипергипоовалов окажется только гипергипоэллипс, так как гипергипоовал Rr распознан уже на первой стадии идентификации.
Далее рассмотрим группу гипоовалов. Поскольку гипоовал Rr также распознан на первой стадии, в ней остаются: кривая R0; кривая R1; гипоэллипс Ламе; циклоидальный овал. Последний распознаем с помощью эксцентриситетконстанты циклоидального овала (пригодилась!). Для этого поочередно для каждой кривой рассчитываем фокальный радиус, умножая размер большой полуоси на эксцентриситетконстанту Eco. Тот овал, в котором пучок из восьми лучей, выпущенных из фокуса и отраженных от кривой, соберется в противоположном фокусе, и будет циклоидальным овалом. Для распознавания оставшихся трех гипоовалов рассмотрим три возможных сценария идентификации. Все зависит от количества фокусов у гипоэллипса Ламе. Первый вариант — кривая Ламе имеет четыре фокуса (например, при сочетании параметров: a/b = 7/10; n = m = 1,7). В этом случае удается распознать все кривые: бесфокусную R0, двухфокусную R1 и четырехфокусную кривую Ламе. Второй вариант — кривая Ламе бесфокусная (например, при сочетании параметров: a/b = 8/10; n = m = 1,7). При этом сможем распознать только R1. Кривая R0 и гипоэллипс будут трудноразличимыми. Третий вариант — кривая Ламе имеет два фокуса (например, при сочетании параметров: a/b = 8/10; n = 1,7 и m=1,9). Выявить при этом удастся только кривую R0. Различить R1 и гипоэллипс Ламе можно по форме кривых и расположению фокусов…
Осталось разобраться с гиперовалами. После первой стадии идентификации, где был определен гиперовал Rr, их у нас осталось два: овал Кассини и гиперэллипс Ламе. Для идентификации их в первую очередь необходимо выровнять масштабированием размеров овалов по высоте. Далее нужно определить положение фокусов (тех, которые фигурируют в определении овала Кассини) относительно центра и нанести их. Оптические фокусы овалов использовать нельзя — у них другие координаты. Та кривая, на которой будет соблюдено следующее условие: произведение расстояний от любой точки кривой до фокусов есть величина постоянная, — и есть овал Кассини. Если степени гиперэллипса Ламе равны 2,5 и более, то кривые хорошо различимы визуально — кривая Ламе более угловатая.
Выводов делать не будем. Главное, что почти все точки над «о» расставлены.
Библиографический список
- Чебыкин В.Г. Врезка люков в обечайки резервуаров, соединения с минимальными (гарантированными) зазорами. Новые виды овальных кривых — «резервуарные» овалы. Справочник // Инженерный журнал. 2012. № 11. С. 3133.
- Чебыкин В.Г. Особенности технологии врезки люков и патрубков в обечайки резервуаров // Технология машиностроения. 2013. № 1. С. 3335.
- Чебыкин В. А не замахнуться ли нам на Габриеля нашего Ламе? // САПР и графика. 2013. № 8. С. 92, 9495.
- Математическая энциклопедия (в 5 томах). М.: Советская энциклопедия, 1982. Т.5. С. 809.
Нижние индексы «co» означают циклоидальный овал (cycloidal oval).
САПР и графика 3`2014
У В. И. Даля: правильный овал — это эллипс.
Эллипс — математическое выражение овала. Каждый эллипс можно точно описать с помощью всего лишь нескольких характеристик (рисунок 1.7).
S,S2 на рисунке 1.7 — длина большой оси эллипса. S3S4 — длина малой оси эллипса. Эллипс теперь определяется уравнением
Для нас представляет интерес (в контексте анализа Фибоначчи) отношение главной и малой оси эллипса, выраженное на математическом языке в следующей формуле
Рисунок 1.7 Геометрия ФИ-эллипса. Источник: FAM Research, 2000.
Эллипс превращается в ФИ-эллипс во всех тех случаях, где отношение большой оси к малой оси эллипса является элементным числом ряда ФИ 0,618-1,000-1,618-2,618-4,236-6,854- и так далее. Круг — специальный тип ФИ-эллипса, в котором а = Ь и отношение а-=-Ь= 1.
ФИ-эллипсы предпочтительнее всех других возможных эллипсов (с отношениями главных осей, деленных на малые оси, иными, чем числа ряда ФИ) , поскольку эмпирические исследования показали, что люди находят приближения ФИ-эллипсов визуально значительно более удовлетворительными.
Когда участники исследовательского проекта сталкивались с различными формами эллипсов и их спрашивали об уровне комфорта, пробное эмпирическое исследование дало результаты, показанные в Таблице 1.1.
Три наблюдателя из четырех предпочли эллипсы, имеющие оси, чьи отношения равны отношению ФИ-эллипса (1,618) или так близко приближены к ФИ-эллипсу, чтобы были почти от него неотличимы.
ФИ — Фибоначчи
Для того чтобы нарисовать овал, выберите на панели инструментов рисования инструмент Oval (Овал) .
Отсмеявшись и утерев слёзы, мы просмотрели остальные ответы и поняли, что интернет предлагает решения на все случаи жизни, нужно только определить, какой именно у вас случай. Мы попытались классифицировать предлагаемые ответы, чтобы легче было выбирать. Итак,
Для тех, кто не умеет рисовать
Для того чтобы нарисовать овал Вам нужно нажать кнопку мыши (левую / среднюю / правую) , перетащить указатель мыши на другое место и отпустить.
Для тех, кто не знает, с чего начать
Нарисуй овал (круг) , поставь точку в середине круга (сверху, снизу, справа, слева)
Для менеджеров
Если Вы попробуете нарисовать овал или прямоугольник без выбора цветов заливки и линии одновременно, то вы ничего не нарисуете.
Для любителей нестандартных решений
Инструментом Эллипс нарисовать овалы.
Для развития абстрактного мышления
Нарисуем треугольник и овал почти в форме яйца.
Если нарисовать овал, затем соединить его с вершиной треугольника, то получим объемную форму конус, он похож на перевернутый стаканчик для мороженого.
Для тупых
Удалите старый овал и нарисуйте овал снова выбранными цветами.
Для ленивых
Перейдите в рабочую область и нарисуйте овал.
Для грустных
В центре листа нарисуйте овал, в котором напишите «поем песни»
Для юннатов (юных натуралистов, если кто не в курсе)
В отдельных слоях нарисовать три овала: голову, туловище и животик (каждый в отдельном слое) .
В отдельном слое нарисовать овал, наклонить его по горизонтали на 45°, дорисовать «Карандашом» лапку.
Рисуйте на здоровье!